Bowie State University Capability Statement

Institution: Bowie State University

DUNS No: 616163721 Cage Code: 3KBS8 NACIS ID(s): 611310, 541490, 541430, 541411, 541512, 541513, 541519, 541611, 541711, 541712

Federal EIN No: 52-6002033

Certificates, Registrations, Accreditations: Middle States Commission, ABET, NCATE, National Center of Excellence for NSA & DHS.

POC Information: Dr. Anika Bissahoyo, Director the Office of Research & Sponsored Programs
Address: 14000 Jericho Park Road, Bowie, Maryland 20715;
Tel: (301) 860-4399 email: abissahoyo@bowiestate.edu

OVERVIEW
Founded in 1865, Bowie State University (BSU) is a public comprehensive institution and the first Historically Black College and University (HBCU) established in the State of Maryland. With a population of over 5,600 students, BSU is committed to providing students with educational experiences that prepare them to successfully become future leaders and innovators in their field of interest. The University is also the site of the first Maryland business incubator to be established at an HBCU, the Bowie Business Innovation Center (Bowie BIC), which provides business support services and facilities that help companies survive and grow during their start-up period. A centerpiece of BSU’s success lies in the area of science, technology, and education. The National Security Administration (NSA) and the Department of Homeland Security (DHS) has designated BSU as a Center of Academic Excellence in Information Assurance Education since 2011. In addition, to ensure that a higher number of students seek and complete advanced quality education in Science, Technology, Engineering, and Mathematics, groundbreaking took place in May 2015 for a new 149,995 square feet Natural Sciences, Mathematics and Nursing building, to support teaching and research in STEM. Slated for completion in 2017, this state-of-the-art building includes 23 Science teaching labs, 15 classrooms, 6 science research labs, 6 shared flexible classroom spaces, 82 academic offices, an informal student gathering space, a greenhouse, a nursing skills simulation suite and various labs for research.

RESEARCH CAPABILITIES

Biomedical Research/Biology: Bioinformatics, Botany, Plant Metabolomics, Physiology

Chemistry: Organic/Synthetic Chemistry, Chemistry

Mathematics/Computer Science: Security in wireless and data networks, parallel algorithms and high-performing computing, embedded systems, robotics, programming languages, data mining, cybersecurity education, intrusion detection, data privacy, artificial intelligence, machine learning, natural language processing and cognitive agents, operating systems, networks and software engineering, image processing, image compression, super resolution, neural networks, pattern recognition

Physics/Engineering: optimization of wind turbine blades

Forensic Science. Security and forensics in small-scale, wireless, mobile devices, computer forensics and cybersecurity exercises

Education: Curriculum development, Leadership training, special education & academic exceptionalities

Environmental Science: environmental science, ecology

Psychology: brain-based learning, comparison analysis of how learning occurs

Business/Management Information Systems: financial market microstructure, immigrant entrepreneurship, and evaluation of financial institutions, development economics, international economics, poverty issues, infrastructural development, safety and risk management, project management, SharePoint Applications, knowledge management

FACILITIES

Makers’ Space- Stratasys uPrint SE Plus with Support Cleaning Apparatus, PrintrBot Simple with Heated Bed, Ultimaker 2, NextEngine Desktop 3D Scanner, Universal Laser Systems Desktop VLS 3.50 (Laser Cutter) with Fume Extraction Apparatus, General CNX iCarver 40-915X CNC with Stand, SMI Eyetracking System
Bowie State University

CHIP: Center for High-Performance Information Processing - The third fastest Supercomputer in the United States boasting a processing speed of 59 TeraFLOPS or 59 trillion calculations per second. BSU’s interdisciplinary research teams use this processing power to sequence large databases of DNA through a DNA Barcoding Initiative to sample, identify and classify species; and in for sifting through big data-generating applications in cybersecurity, computer forensics and life sciences.

Virtual Reality Laboratory - This laboratory applies cutting-edge VR technology currently available in academia and industry. In addition, the lab allows robotics experimentation and research in Multi-agent systems for evacuation. The current projects in the Virtual Reality Laboratory focus on evacuation simulation, way finding, modeling emergency scenarios, virtual museum, Multi-user gaming environments, and online VR classroom.

Laboratory for Information and Infrastructure Security and Assurance/ LUCID & K-20 Workforce Development - The Laboratory for Information and Infrastructure Security and Assurance (LIISA) provides students with state-of-the-art-technology equipment and software to both attack and defend target computer networks in a secure environment. (LUCID) through the use of a secured flexible and scalable VMware management network, teams launch attacks and defend against intrusions during cybersecurity competition exercises. (K-20 Workforce Development) implements best practices and software design for Cloud base infrastructure and the utilization.

Biotechnology Core Laboratory - DNA Microarray, global gene expression, cellular/ biological imaging & analysis, Quantitative Gene Express, Microarray Verification, Quality control and Assay Validation, Pathogen Detect, SNP Genotyping, MicroRNA Analysis, Viral Quantification through both Real-Time PCR and Thermal Cycle PCR.

Other Major & Specialized Instrumentation - Scanning Electron, Florescence, Infrared, NMR, UV/Vis Microscopy, High speed centrifugation, Particle Size Analyzer, Vector Network Analyzer, Flow Cytometer, Atomic Absorption Spectroscopy, GC-Mass Spectroscopy

CURRENT RESEARCH AWARDS / PAST PERFORMANCE

National Aeronautics and Space Administration (NASA) - STEM HBCU Network (Treopia Washington, Dr. Kimetta Hairston, Dr. Lynne Long): This sub award from Morgan State University supports pre-service teacher educators in developing STEM curricula using NASA content; students designed and implemented hands-on activities for K-12 students in a STEM/Sports camp. ($30K; 3/1/14 to 8/31/15)

National Nuclear Security Administration (NNSA) sub-award with Norfolk State University - K-20 Cybersecurity Pipeline (Dr. Lethia Jackson): This project aims to develop a pipeline for K-20 workforce specifically trained to address realistic security problems experienced by NNSA laboratories in particular, U.S. government agencies, and the private industry in general. ($1.5M; 10/1/14 to 9/30/19)

National Science Foundation (NSF) - Education Innovation Initiatives - Ecosystem for Student Success at BSU project (President Mickey Burnim, Dr. George Acquaah, Dr. Guy-Alain Amoussou): The project is working to transform the first two years of STEM teaching and learning by providing support interventions by building student learning communities, providing career-related mentoring and undergraduate research learning opportunities; to integrate problem-solving and entrepreneurship in the STEM curriculum, and expanding access to a maker space to support students' multidisciplinary learning; and to provide professional development to faculty on experiential learning and evidence-based instructional practices. ($1.14M; 9/1/2015 to 8/31/18)

National Science Foundation - Bowie State Applied Biotechnology Initiative (BSABI) (Dr. George Ude and Dr. George Acquaah and collaborators from Cold Spring Harbor Laboratory and Godfrey Okoye University in Nigeria): This grant provides student training in basic and advanced interdisciplinary concepts, and laboratory skills in biotechnology using an open-lab concept that will promote peer-mentoring and provide students with independence to explore and be creative in their discovery-based learning experience, and to acquire laboratory skills for work or continued education in STEM. ($400K; 7/1/14 to 9/30/17)
Bowie State University is very interested in establishing a formal collaboration with GTRI. Toward that end, we have modified the original capability statement to reflect what we believe are a representative sampling of core competencies which most closely align with GTRI’s capabilities and current work.

1. Android Malware Detection (Dr. Seonho Choi): Developing new malware detection mechanism for Android-based mobile devices based upon library API call tracing and signal processing techniques. To better understand the intentions of the malwares and improve the detection capability, it will be beneficial to trace/utilize the library API call level semantics that comprehend the behaviors of the Java components in the Apps rather than focusing on low-level system call histories. By tracing and utilizing library API calls we can capture the intentions/behaviors of an application at a higher level. Phase I - develop a new semantic-preserving signal conversion technique combined with API clustering techniques to convert a sequence of library API calls (along with library object information) into a signal. This capability aligns with CTISL.

2. Designing a Robust Two-Factor Authentication using Physiological Signals and PIN (Dr. Soo-Yeon Ji): Design of a robust two-factor authentication approach using the physiological signals and PIN. This project is innovative in the following aspects: 1) it creates a two-factor authentication method by combining textural information and unique human innate characteristics in order to detect any abnormal access from unauthorized users and can guarantee the users’ identification in a secure manner without adopting template from the users, it also extracts significant features that extract hidden patterns based on the user’s reliability using the physiological signals. This capability aligns with ELSYS.

3. Feasibility of Fingerprinting Wireless Nodes Using Physical Properties (Dr. Seonho Choi): Studying the physical properties that could satisfy both reliability and unforgibility requirements so that they might be used to fingerprint mobile nodes in wireless networks. Reliability means that the fingerprint created from the physical property should be stable enough so that we do not get a large number of false positives. Unforgibility means that it is infeasible or very costly for the attacker to forge the physical property so that we don’t get a number of false negatives. This capability aligns with CTISL.

4. Privacy Assured Image Retrieval Using Content Description Curves (Dr. Bo Yang, Dr. Seonho Choi): We will conduct a research project to find a solution for cloud service providers to securely and efficiently perform query processing for individual and enterprise clients, and thus drastically increase the adoption of cloud computing in larger scale in the content-based retrieval applications. This capability aligns with CTISL.
5. Face Recognition Application as Biometric Password in Mobile Devices (Dr. Jie Yan, Dr. Bo Yang): We want to develop a new face recognition method using virtual view-based eigenspace. This method provides a possible way to recognize human face of different views even when samples of a view are not available. To achieve this, we will develop a virtual human face generation technique that synthesizes human face of arbitrary views. **This capability aligns with CTISL.**

6. The Center for High-Performance Information Processing (CHIP): (Dr. Hoda El-Sayed) Created to support high-performance computational science research and education, with emphasis on computational biology, computational chemistry and parallel computing research. In addition, CHIP, will work on integrating parallel computing concepts into existing curricula as per the IEEE Technical Committee on Parallel Processing and NSF recommendations. **This capability aligns with CTISL.**

7. National Science Foundation LUCID: A Spectator Targeted Visualization System to Broaden Participation at Cyber Defense Competitions, (Dr. Jie Yan): The goal of this project is to stimulate interest in cybersecurity competitions through the development of a visualization and broadcast system targeted to enhancing learning and understanding among spectators of these exercises. **This capability aligns with CTISL.**

8. National Science Foundation funded a project, (Dr. Sharad Sharma), to deploy Virtual and Augmented Reality (VAR) as a research and educational vehicle to immerse students in research and critical thinking challenges. This project enhanced the Virtual Reality course curriculum with more inquiry based problem-solving activities and hand-on experiences based on Virtual and Augmented Reality educational modules; developed the Virtual and Augmented Reality Laboratory for research and education in the Computer Science Department to provide undergraduate students with realistic immersive learning environments; and provided instrumentation to further develop the teaching and research infrastructure in VAR laboratories. The project seeks to prepare computer science majors at BSU to be competitive to enter graduate programs and the workforce. **This capability aligns with CTISL.**

9. National Nuclear Security Administration (NNSA) through a sub-award from Norfolk State University, K-20 Cybersecurity Pipeline, (Dr. Lethia Jackson): This proposal aims to develop a pipeline for K-20 workforce specifically trained to address realistic security problems experienced by NNSA laboratories in particular, U.S. government agencies, and the private industry in general. The proposed project will develop a pilot workforce development program to produce cybersecurity professionals in significant numbers and relevant quality to address the pressing cybersecurity workforce shortage. **This capability aligns with CTISL.**
Detecting Software Vulnerability with Deep Learning Approaches

Focus Area
• Software Security
• Machine Learning

Current Projects/Sponsors
• Mining software behaviors from software bytecode (NSF)

Project Description
• Statically and dynamically detecting security vulnerability in software systems
• Apply machine learning techniques, in particular, utilizing deep learning to find software vulnerability automatically

Collaborative Research Ideas/
Potential Sponsors
• Collaboration are needed to apply machine learning in the field of software security and software engineering
• NSF, DOD

Contact Information:
Dr. Frank Xu
wxu@bowiestate.edu
301-860-3965
http://cs.bowiestate.edu/Faculty_Web_Pages/FrankXu/
RESUME

Bo Yang

Dept. of Computer Science, Bowie State University Office Phone: (301) 860-4459
Emails: byang@bowiestate.edu Cell Phone: (443) 878-5090

EDUCATION

Ph.D. Computer Science and Engineering (May 2007)
The Pennsylvania State University — University Park
Dissertation: Semantic-Aware Data Processing: Towards Cross-Modal Multimedia Analysis and Content-Based Retrieval in Distributed and Mobile Environments

M.E. Computer Science (July 2000)
Shandong University, China
Research Area: Distributed Databases and Active Databases

B.S. Computer Science (Summa Cum Laude, July 1997)
Shandong University, China

RESEARCH INTERESTS

• Distributed Data Processing and Analysis
• Cloud Data Security and Privacy
• Sensor Network Security
• Information Systems and Retrieval
• Mobile and Peer-to-Peer Computing

GENERAL INTRODUCTION

I currently serve as an Associate Professor in the Department of Computer Science. I am also the director of the Cybersecurity research lab at Bowie State University, and led the effort to re-designate BSU as a prestigious and distinctive NSA and DHS designated Center of Academic Excellence in Information Assurance Education (CAE-IAE). My technical focus areas include distributed data processing and analysis, cloud data security and privacy, sensor network security, information systems and retrieval, and mobile and peer-to-peer computing. I have advised 5 doctoral students and 2 of them successfully finished their dissertation defense. With my guidance and supervision, many graduate and undergraduate students have done research projects with my grants from NSF, NASA, and DOD, generating reports for publications, theses, and software modules. I have also served on the technical program committee for an IEEE conference, publicity chair for North America of International conferences IIWAS and MOMM and also as session chair of the World Congress on Computer Science.
RESEARCH AND WORK EXPERIENCE

Associate Professor, Bowie State University (August 2013 – Present)
Currently directing security courses and research

Assistant Professor, Bowie State University (August 2007 – July 2013)

AWARDS AND PROFESSIONAL ACTIVITIES

- Co-PI, DoD: A Heterogeneous High-Performance System for Computational and Computer Science, Funded in Nov. 2014
- Outstanding Journal Publication Award, College of Arts & Sciences, Bowie State, Apr 2009
- PI, HBCU-UP Mini Grants, Funded in 2007 and 2009
- Annual Best Graduate Research Assistant Award, CSE Department, Penn State University, 2006. (2 out of 201 graduate students in the Department)
- Best Paper Award of IEEE International Conference AINA 2005

SELECTED PUBLICATIONS

Papers in Referred Journals

Book Chapters

Papers in Referred Conferences

PROFESSIONAL SERVICE

- Director and PoC of NSA/DHS Center of Academic Excellence at Bowie State
- Technical Program Committee member of an international conference in Beijing China 2016
- Technical Program Committee member of IEEE conference CCNC 2013
- Publicity Chair for North America of international conferences IIWAS and MOMM’08
- Session chair of World Congress in Computer Science, Computer Engineering, and Applied Computing (WORLDCOMP’07)
- Reviewer of journals and books
 - Encyclopedia of Multimedia Technology and Networking
 - Elsevier Information Systems Journal
 - ELSEVIER Journal of Pervasive and Mobile Computing
 - SCS International Journal of Information Technology
 - CSI Journal on Computer Science and Engineering
 - Elsevier Journal of Network and Computer Applications
 - Elsevier Information Processing and Management Journal
 - Springer Information Retrieval Journal
 - Information Resources Management Journal
 - IOS Knowledge Based Intelligent Information & Engineering Systems Journal
 - International Journal on Digital Libraries
 - Journal of Zhejiang University -SCIENCE C (Computers & Electronics)
Weifeng Xu
Department of Computer Science
Bowie State University
14000 Jericho Park Road, Bowie, MD 20715-9465
Phone: 301-860-3965, Email: wxu@bowiestate.edu

a. Professional Preparation

<table>
<thead>
<tr>
<th>Institution</th>
<th>Major</th>
<th>Degree</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southeast Missouri State University</td>
<td>Computer Science</td>
<td>B.S.</td>
<td>2000</td>
</tr>
<tr>
<td>Towson University</td>
<td>Computer Science</td>
<td>M.S.</td>
<td>2002</td>
</tr>
<tr>
<td>North Dakota State University</td>
<td>Software Engineering</td>
<td>Ph.D.</td>
<td>2007</td>
</tr>
</tbody>
</table>

b. Appointments

2015 - Present Associate Professor, Department of Computer Science, Bowie State University, Bowie, MD
2014 - 2015 Associate Professor (Tenured), Department of Computer and Information Science, Gannon University, Erie, PA
2008 - 2014 Assistant Professor, Department of Computer and Information Science, Gannon University, Erie, PA
2008 - 2015 Director, Keystone Software Development Institute, Gannon University, Erie, PA
2007 - 2008 Assistant Professor, the University of Virginia's College at Wise, Wise, VA
2005 - 2007 Sr. Program Analyst, Swanson Health Products, Fargo, ND

c. Products

PRODUCTS MOST CLOSELY RELATED

OTHER SIGNIFICANT PRODUCTS

d. Synergistic Activities

1. I am the new faculty member joined in Bowie State University in fall 2015. I am responsible for teaching security-related courses, including networking security, intrusion detection, and software security. Before joining Bowie State University, I severed as the director of Keystone Software Development Institute at Gannon University between 2008 and 2015. I was responsible for establishing and maintaining partnerships with local industry to promote awareness of IT program, including the integration and transferring of knowledge in the field of software engineering between academia and local industry. Under my supervision, the institute was successfully awarded $150k for each year to carry out several IT related projects. These projects include the information-based transportation system for locomotives from General Electricity, the 3D surface image capturing system from Precision Rehab Manufactory, and the patient information system from National Health Care. In addition, I severed as a faculty senator at Gannon University in 2012 and made significant contribution to the proposing and drafting the administrative evaluation policy.

2. I am constantly fascinated with the innovation of pedagogical methods for higher education. In 2011, to help students understand both technical and social aspects of software engineering, I present a complete case study of a hybrid approach that systematically combines a game application-driven approach and social collaborations into the software engineering curriculum at the undergraduate level. The study results are published in a well-known conference.

e. Collaborators & other affiliations

1. Collaborators (9): Dianxiang Xu (Boise State University), Tao Ding (University of Maryland Baltimore County), Deng Lin (George Mason University), Eric Wong (University of Texas at Dallas), Zheng, Qing (Gannon University), Frezza, Stephen (Gannon University) Sasi, Sreela (Gannon University), Dinner, Todd (Precision Rehab Manufactory), William R. Betzb (Lake Erie Internal Medicine)

2. Graduate Advisors (1): Dianxiang Xu (Boise State University)

3. Thesis advisor (8) : Ding, Tao (Ph.D. University of Maryland Baltimore County), Lin, Deng (Ph.D. George Mason University), Pattison, Brian (GE), Frombach, Alix (GE), Williams, James (GE) Bavikati, Bharath K (U.S. Department of Commence), Althiyab, Abdullah (GE)